

 Navigation

 	
 index

 	sanction 0.1 documentation

Contents

	Overview
	Conventions
	Calls

	Callbacks

	Installation

	Usage
	Overview

	Instantiation

	Authorization Redirect
	Required Parameters

	Optional Parameters

	Token Exchange
	Required Parameters

	Optional Parameters

	Resource Request
	Required Parameters

	Optional Parameters

sanction [sangk-shuhn]: authoritative permission or approval, as for an action.

Overview

sanction is a lightweight, dead simple client implementation of the
OAuth2 protocol. The major goals of the library are:

	Grok me
	At a whopping 138 SLOC, sanction is pretty easy to understand

	Support multiple providers
	Most providers have implemented varying levels of adherance to the
OAuth 2.0 spec. The goal with this library is to either handle the
diversions natively or expose methods to allow client code to deal with it
efficiently and effectively.

	Support all server-side OAuth 2.0 flows
	Three of the four OAuth 2.0 flows should be supported by this library.

Conventions

This module follows the following patterns for function calls and callbacks:

Calls

libfunc(opts, callback)

	opts: An object containing all required and optional attributes.

	callback: The function to be called on completion of execution.

Callbacks

mycallback(e, data)

	e: An error object. null if no errors encountered.

	data: The data retrieved by the API call. null if error encountered.

Installation

npm install [-g] sanction

Usage

Overview

There are three steps to accessing OAuth 2.0-protected resources:

	Access request/authorization

	Token exchange (code for access token)

	Resource request

This library exposes API for all three, but expects your client code to
redirect the user as needed for your given environment (web, installed app,
etc) for the initial access request and authorization.

Instantiation

var sanction = require('sanction');
var opts = {
 authEndpoint: '[uri]',
 tokenEndpoint: '[uri]',
 resourceEndpoint: '[uri]',
 clientId: '[client_id]',
 clientSecret: '[client_secret]',
 redirectUri: '[redirectUri]'
};
var client = new sanction.Client(opts);

	authEndpoint: The provider-specific base URL to redirect the user to, to
gain authorization to access protected resources.

	tokenEndpoint: The provider-specific base URL to use when exchanging the
access “code” for a token used in all subsequent resource requests.

	resourceEndpoint: The provider-specific base URL to use when executing
resource requests.

	clientId: The client ID allocated to your app by the provider.

	clientSecret: The client secret allocated to your app by the provider.

	redirectUri: The redirect URL given to the provider during app
registration for security reasons.

Authorization Redirect

var opts = {
 scope: '[scope]',
 state: '[state]',
 responseType: '[response_type]'
};
client.authUri(opts, function(e, uri) {
 // TODO: redirect based on environment
});

Required Parameters

	scope: A list of provider-specific resources your application is
requesting access to.

Note

The delimiter is provider-defined. RFC 6749 specifies
space-delimiter, but this is not always the case (i.e. Facebook)

Optional Parameters

	state: A string that will be returned to the code handling redirectUri.
The intention is to use this as an XSS counter-measure in the form of CSRF
protection.

	responseType: Defaults to “code”. This should only be set if dealing with
OAuth 2.0 extensions and you know what you’re doing.

Token Exchange

The token exchange implementation (requestToken) deals with two variations
of the flow: initial token request (code exchange) and token refresh. The flow
followed is determined by the data in opts.

var opts = {
 code: '[code]',
 parser: [parser]
};

// or

var opts2 = {
 refreshToken: '[refreshToken]',
 parser: [parser]
};

client.requestToken(opts, function(e, data) {
 // TODO: do something with the token if it's there
});

Required Parameters

	code: The code sent back by the provider once authorization has been
granted to your application.

	refreshToken: The refresh_token to use in order to refresh the
clients’ access_token.

Note

code or refreshToken should be defined. A combination or
or omission of both will result in an error.

Optional Parameters

	parser: Not all providers use JSON. This allows the client code to define
what parsing method should be used on provider response.

	grantType: Defaults to “authorization_code”. Should only be changed if
you’re dealing with an OAuth 2.0 extension and you know what you’re doing.

Resource Request

var opts = {
 path: '[path]',
 method: '[method]',
 data: '[data]',
 parser: [parser],
 transport: [transport]
};
client.request(opts, function(e, data) {
 // TODO: present the data to the user
});

Required Parameters

	path: Resource path. This is in addition to the base resourceEndpoint
set during client instantiation.

Optional Parameters

	method: HTTP method to be used (GET, POST, etc). Defaults to
GET unless data is present, in which case POST is used as the
default.

	data: The data payload to be sent along with the request.

	parser: As with the token request, this will be used if defined to parse
response data.

	transport: The access token transport method to use. Defaults to
sanction.transport.query. The other implementation provided is
sanction.transport.headers.

 Copyright 2013, Demian Brecht.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	sanction 0.1 documentation

Index

 Copyright 2013, Demian Brecht.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		sanction 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Demian Brecht.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

